Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Adv Sci (Weinh) ; 10(19): e2205255, 2023 07.
Article in English | MEDLINE | ID: covidwho-2317185

ABSTRACT

Short-range exposure to airborne virus-laden respiratory droplets is an effective transmission route of respiratory diseases, as exemplified by Coronavirus Disease 2019 (COVID-19). In order to assess the risks associated with this pathway in daily-life settings involving tens to hundreds of individuals, the chasm needs to be bridged between fluid dynamical simulations and population-scale epidemiological models. This is achieved by simulating droplet trajectories at the microscale in numerous ambient flows, coarse-graining their results into spatio-temporal maps of viral concentration around the emitter, and coupling these maps to field-data about pedestrian crowds in different scenarios (streets, train stations, markets, queues, and street cafés). At the individual scale, the results highlight the paramount importance of the velocity of the ambient air flow relative to the emitter's motion. This aerodynamic effect, which disperses infectious aerosols, prevails over all other environmental variables. At the crowd's scale, the method yields a ranking of the scenarios by the risks of new infections, dominated by the street cafés and then the outdoor market. While the effect of light winds on the qualitative ranking is fairly marginal, even the most modest air flows dramatically lower the quantitative rates of new infections.


Subject(s)
COVID-19 , Respiration Disorders , Respiratory Tract Diseases , Humans , Respiratory Aerosols and Droplets
2.
Journal of Fluid Mechanics ; 930, 2022.
Article in English | ProQuest Central | ID: covidwho-1517578

ABSTRACT

Air exchange between people has emerged in the COVID-19 pandemic as the important vector for transmission of the SARS-CoV-2 virus. We study the airflow and exchange between two unmasked individuals conversing face-to-face at short range, which can potentially transfer a high dose of a pathogen, because the dilution is small when compared to long-range airborne transmission. We conduct flow visualization experiments and direct numerical simulations of colliding respiratory jets mimicking the initial phase of a conversation. The evolution and dynamics of the jets are affected by the vertical offset between the mouths of the speakers. At low offsets the head-on collision of jets results in a `blocking effect', temporarily shielding the susceptible speaker from the pathogen carrying jet, although, the lateral spread of the jets is enhanced. Sufficiently large offsets prevent the interaction of the jets. At intermediate offsets (8-10 cm for 1 m separation), jet entrainment and the inhaled breath assist the transport of the pathogen-loaded saliva droplets towards the susceptible speaker's mouth. Air exchange is expected, in spite of the blocking effect arising from the interaction of the respiratory jets from the two speakers.

3.
Saf Sci ; 144: 105453, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1386633

ABSTRACT

This work assesses the risks of Covid-19 spread in diverse daily-life situations involving crowds of maskless pedestrians, mostly outdoors. More concretely, we develop a method to infer the global number of new infections from patchy observations, by coupling ad hoc spatial models for disease transmission via respiratory droplets to detailed field-data about pedestrian trajectories and head orientations. This allows us to rank the investigated situations by the infection risks that they present; importantly, the obtained hierarchy of risks is very largely conserved across transmission models: Street cafés present the largest average rate of new infections caused by an attendant, followed by busy outdoor markets, and then metro and train stations, whereas the risks incurred while walking on fairly busy streets are comparatively quite low. While our models only approximate the actual transmission risks, their converging predictions lend credence to these findings. In situations with a moving crowd, density is the main factor influencing the estimated infection rate. Finally, our study explores the efficiency of street and venue redesigns in mitigating the viral spread: While the benefits of enforcing one-way foot traffic in (wide) walkways are unclear, changing the geometry of queues substantially affects disease transmission risks.

4.
Proc Natl Acad Sci U S A ; 117(41): 25237-25245, 2020 10 13.
Article in English | MEDLINE | ID: covidwho-797251

ABSTRACT

Many scientific reports document that asymptomatic and presymptomatic individuals contribute to the spread of COVID-19, probably during conversations in social interactions. Droplet emission occurs during speech, yet few studies document the flow to provide the transport mechanism. This lack of understanding prevents informed public health guidance for risk reduction and mitigation strategies, e.g., the "6-foot rule." Here we analyze flows during breathing and speaking, including phonetic features, using orders-of-magnitude estimates, numerical simulations, and laboratory experiments. We document the spatiotemporal structure of the expelled airflow. Phonetic characteristics of plosive sounds like "P" lead to enhanced directed transport, including jet-like flows that entrain the surrounding air. We highlight three distinct temporal scaling laws for the transport distance of exhaled material including 1) transport over a short distance (<0.5 m) in a fraction of a second, with large angular variations due to the complexity of speech; 2) a longer distance, ∼1 m, where directed transport is driven by individual vortical puffs corresponding to plosive sounds; and 3) a distance out to about 2 m, or even farther, where sequential plosives in a sentence, corresponding effectively to a train of puffs, create conical, jet-like flows. The latter dictates the long-time transport in a conversation. We believe that this work will inform thinking about the role of ventilation, aerosol transport in disease transmission for humans and other animals, and yield a better understanding of linguistic aerodynamics, i.e., aerophonetics.


Subject(s)
Asymptomatic Infections , Betacoronavirus/physiology , Coronavirus Infections/transmission , Pneumonia, Viral/transmission , Speech/physiology , Aerosols , Air Movements , COVID-19 , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Humans , Models, Theoretical , Pandemics/prevention & control , Phonetics , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , Respiration , SARS-CoV-2 , Ventilation
SELECTION OF CITATIONS
SEARCH DETAIL